E3.HarnessAnalyzer Archives - English https://www.zuken.com/en/blog/tag/e3-harnessanalyzer/ PCB Design, Electrical Design, & Design Data Management Fri, 21 Feb 2025 12:22:26 +0000 en-GB hourly 1 https://wordpress.org/?v=6.7.2 https://www.zuken.com/en/wp-content/uploads/sites/2/2019/04/cropped-ZUKEN_flag-512-32x32.png E3.HarnessAnalyzer Archives - English https://www.zuken.com/en/blog/tag/e3-harnessanalyzer/ 32 32 Benefits of a Digital Twin Strategy for Development and Production https://www.zuken.com/en/blog/digital-twin-development-production/ Thu, 19 Jul 2018 04:01:56 +0000 https://blog.zuken.com/?p=10047 Because of its influence on weight and cost, accurately digitizing the wiring system is a priority when implementing a digital twin strategy in the automotive and transportation sectors. It’s also one of the most challenging aspects of this task.

The post Benefits of a Digital Twin Strategy for Development and Production appeared first on English.

]]>
Because of its influence on weight and cost, accurately digitizing the wiring system is a priority when implementing a digital twin strategy in the automotive and transportation sectors. It’s also one of the most challenging aspects of this task.

In my earlier blog posts, I described the importance of a comprehensive and standardized data model and on the different viewpoints on it.

Today I want to focus on the resulting benefits for the various stakeholders in the process. And again, the use of a standardized data model is the key for the digital twin application and for the resulting improvements in process and usage scenarios of related tools. Let’s have a look at a few of these aspects:

Decoupling of process between OEM and Tier 1

A while back, the Tier 1 harness suppliers had to use exactly the same tooling environment as the OEMs they were working for. This meant that the Tier 1s had to invest in and maintain different toolsets for every OEM. Also, it was not easy to shift engineering resources between different projects without investing in training, and allowing for learning curves for the different toolsets.

Data exchange standards such as KBL have made it possible to decouple this process chain.

Decoupled Process

As a result, the Tier 1 suppliers can work in their preferred tool environment, which may be different from and independent to the tools used by the OEM. At the end of the day, all data delivered by the suppliers must arrive at the OEM in the defined standard format and with an agreed data maturity. Of course, it is essential to have a powerful viewer so all stakeholders can read, understand, and verify the KBL data easily. And we know that an XML-editor isn’t up to the job. That is why Zuken developed E3.HarnessAnalyzer with rich functionality to support this need.

Best-in-class tools for every process step

We continue on a similar theme. A digital process based on standards not only decouples the process between OEMs and suppliers, but also offers the opportunity to build a process chain within a company by combining tools from different vendors. This means, instead of having a complete toolset from one vendor, users can now cherry-pick the tools from different vendors. For the tool vendors this brings more competition, but for the users there are many benefits such as much more flexibility and investment protection.

Let’s look at an example: We’ll assume a company has a toolset in place for the development of wiring systems. Typically, there will be a schematic tool, a 3D DMU tool, and a 2D harness design tool.

Series Process

Now a new requirement comes up; the ability to try out design changes quickly in order to speed up the design process. This could mean finding out the impact on  bundle diameters, weight or cost, for a planned change in the design.

The established tools can´t solve this issue, as their process is much too slow for a “what-if” evaluation such as this. On the other hand, there are no plans to replace the existing toolset in general.

The decoupling we looked at earlier allows the company to add a dedicated “helper” tool able to answer such “what-if” questions within minutes, to the existing process by using data standards such as KBL.

Wiring System Optimization

This use case is also a good example what standard interfaces have to realize: short set-up times. If a user want to run a “what-if” study, a major criteria is the length of time it takes until they can have all their series development data available. Previously, 80% of the time taken to run such a study was taken up on transferring, converting and adjusting the input data. Now a modern tool like E3.Wiring System Lab can support all applied standards and provides dedicated support functions, so a comprehensive data model for the complete wiring system of a car can be compiled in less than 10 minutes.

Keeping the topology in a 3D environment also saves work flattening to 2D, so after another 10 minutes, the results of the “what-if” question are available and the result is proven by a detailed data analysis generated by the system.

Such a flexible optimization of an existing process chain, achieved by adding innovative building block solutions, is only possible because of standardized data formats such as KBL and VEC.

Here’s another simple example for the resulting benefits around viewer tools such as the one I mentioned earlier, E3.HarnessAnalyzer.

In an OEM company there are many stakeholders who are interested in the technical details of a wiring harness. This could be production planners, EMC experts, quality inspectors or cost engineers. All of them need only read access to the harness data, so why make things complicated by making them work with authoring tools. And this is not only a problem regarding training, but also with access rights and available licenses. Using paper or pdf versions of harness drawings is not really a viable alternative. It is much better for all stakeholders to use a dedicated viewer able to render the KBL / VEC data in the way the different users are familiar with.

So the standardization of a digital data model is paving the road to make a digital twin strategy become true in daily practice, and to realize substantial benefits for the involved stakeholders.

Watch out for the next post in the series – Benefits of the Digital Twin Approach for After Sales and Service

Previous posts in the series:

The post Benefits of a Digital Twin Strategy for Development and Production appeared first on English.

]]>
The Building Blocks of a Digital Twin Strategy for Automotive Wiring Systems https://www.zuken.com/en/blog/digital-twin-automotive-wiring-systems/ https://www.zuken.com/en/blog/digital-twin-automotive-wiring-systems/#respond Thu, 12 Apr 2018 00:01:47 +0000 https://blog.zuken.com/?p=9853 Because of its influence on weight and cost, accurately digitizing the wiring system is a priority when implementing a digital twin strategy in the automotive and transportation sectors. It’s also one of the most challenging aspects of this task.

The post The Building Blocks of a Digital Twin Strategy for Automotive Wiring Systems appeared first on English.

]]>
Because of its influence on weight and cost, accurately digitizing the wiring system is a priority when implementing a digital twin strategy in the automotive and transportation sectors. It’s also one of the most challenging aspects of this task.

In my last blog, I focused on the importance of a comprehensive and standardized data model as my first key requirement to meet this challenge.

Today I want to concentrate on the various aspects of the wiring system, and consider how different users expect to see different presentations and views of the related data.

Block 1: Connectivity and topology

Let´s see how a wiring system can be described digitally: The core of a KBL or VEC file is the product description of the wiring harness itself. This description can be broken down into connectivity and topology parts.

Block 1: Connectivity and Topology

Connectivity describes the electrical from-to relationships – or which wires connect with which components, including all technical details. On the other hand, the topology defines the geometrical details – where the wires run in the vehicle, including electromechanical parts for wire protection like tapes, tubes or grommets.

In a KBL or VEC this information is modeled in a standardized XML file. However this XML can’t be read by a user directly, so a specialized viewer is required.

Because of its rich functionality, Zuken’s E3.HarnessAnalyzer has become the de facto-standard for this task. The connectivity, as well the topology information with all its details and relations, are shown in a data grid. In addition, this information is represented in a graphical format to satisfy the different needs of each user:

  • For those who are mainly interested in connectivity, the tool can render a partial schematic out of the digital connectivity model.Digital Wiring System, Connectivity View
  • If the interest lies more with the geometrical part, then a 3D rendering of the KBL data may be the perfect choice.

Digital Wiring System, 3D Topology View

  • But sometimes a 2D representation of the KBL data may be combined with the original harness drawing as a SVG, and can be the better choice for answering specific questions.

Block 2: Metadata, complexity and history

So, the digital data model KBL / VEC can describe the harness product completely, and a powerful viewer can make this design information easily understandable to different users to support their specific needs.

In addition to the pure design data, a KBL / VEC file can also carry a comprehensive set of metadata. The most important of these are related to complexity management, as wiring harness products are heavily variant related – often even in unique, customer-specific products. Depending on the method used, a KBL / VEC file can model a composite harness structure as well as a modular one (KSK).  And this model description has to be distributed to the users via the powerful functionality of the viewer tool – such as updating the graphical views based on the vehicle-specific selection of KSK modules.

 

Cockpit Harness Configurations
The same cockpit harness is dynamically visualized in different configurations

Of course, this filtering operation must be applied to all data grids and viewpoints.

In addition, KSK can transport history information – especially for the modules. Having a powerful viewer tool, the user can easily find out details about the current product version – such as who released it and when. And they can retrieve the history of a specific harness module.

Block 3: Release and version data, PLM model

The communication of metadata in KBL is outperformed by far when using the VEC format. VEC can contain the release and version data on every single object, so the user can acquire detailed information about any connector or terminal. As a result, VEC can also claim to cover a comprehensive PLM model for wiring system components.

Such a powerful data format requires not only a viewer to create benefits for the stakeholders in the process, but also powerful authoring tools and a dedicated data management solution. With Zuken’s popular E3.series electrical design tool, in combination with its dedicated data management tool, DS-E3, Zuken is well prepared to provide the full suite of tools for the whole process chain of digital wiring system development.

Watch out for the next blog in the series.

The post The Building Blocks of a Digital Twin Strategy for Automotive Wiring Systems appeared first on English.

]]>
https://www.zuken.com/en/blog/digital-twin-automotive-wiring-systems/feed/ 0
Why Are Automotive Wiring Systems Experts Getting Excited about the Digital Twin? https://www.zuken.com/en/blog/digital-twin-automotive-wiring/ https://www.zuken.com/en/blog/digital-twin-automotive-wiring/#respond Thu, 05 Apr 2018 07:01:22 +0000 https://blog.zuken.com/?p=9838 While the concept of a digital twin has been around since the early 2000s, it’s only thanks to the Internet of Things (IoT) that its time has come. It was recently named one of Gartner’s Top 10 Strategic Technology Trends for 2018. Simply speaking, a digital twin is a virtual model of a process or product, which is paired to the physical world. This approach allows the analysis of data and creates a wide range of new technical and commercial opportunities.

The post Why Are Automotive Wiring Systems Experts Getting Excited about the Digital Twin? appeared first on English.

]]>
While the concept of a digital twin has been around since the early 2000s, it’s only thanks to the Internet of Things (IoT) that its time has come. It was recently named one of Gartner’s Top 10 Strategic Technology Trends for 2018.

Simply speaking, a digital twin is a virtual model of a process or product, which is paired to the physical world. This approach allows the analysis of data and creates a wide range of new technical and commercial opportunities.

The implementation of a digital twin strategy is an active initiative across many industry sectors, but the automotive and transportation sectors are showing a particular interest. So why is this?

In this blog I’ll share:

  • What the automotive sector has to gain from the digital twin, and a few of its challenges.
  • Two key requirements for creating a digital twin for the automotive sector.

 

Automotive Wiring Systems Digital Twin

Capturing the nervous system

In the demanding task of creating a digital twin for the automotive sector, one area is often overlooked – the automobile’s nervous system of electrical wiring. The wiring system installed in today’s mid-range vehicle comes to a total wire length of 5km and has a substantial influence on weight and cost, so it is critical to any new data model.

Nevertheless, this area is lagging behind in terms of digitization and, in practice, the physical product wiring harness is still mainly defined using a 2D drawing. If we consider that the wiring system is ultimately unique due to the infinite combinations of automotive product options, and that there can be hundreds of design changes per year, you can imagine the huge challenges that still need to be overcome in order to create a 100% digital model of the wiring system.

Neutral data format

The first key requirement for digitization is a comprehensive data model. Over 15 years ago, the German automotive industry started to cooperate on a standard data format to realize an OEM-neutral data exchange between OEMs and harness suppliers. The resulting standard, VDA 4964, is known as KBL – the German abbreviation of Harness Description List. It has simplified the data exchange between different systems since 2005, and is the only accepted standard.

The working group continued their standardization work, and they have since come up with an enhanced data model that is able to describe the comprehensive wiring system of a vehicle to 100% level. This enhanced standard, VDA 4968, is known as VEC (Vehicle Electric Container) and it includes the KBL content, but adds a rich PLM model for all objects as well the overall vehicle approach (instead of KBL’s single harness view).

Everything must be digestible

VEC therefore be seen as the lingua franca for wiring systems, and it realizes a very important prerequisite for the implementation of a digital twin strategy.

However, there is another hurdle to be passed:  VEC data have to be transformed to “eupeptic” information so they can be digested by all the stakeholders in the process. The complex XML structure of a VEC file makes it impossible for a user to read these data directly. In addition, the many stakeholders in an automotive wiring system process are spread across a range of different roles – there are designers, lab engineers, EMC experts, production planners, quality managers, cost calculators and more…. All of these team members need easy access to wiring system data, but they differ in the way they want to view the data.

A powerful data-viewing engine

This brings us to the second key requirements of a digital twin strategy for wiring systems – a powerful data-viewing engine. Zuken has a wiring system cockpit called E3.HarnessAnalyzer for this. In the next blog in this series, we will have a closer look at the available functionality, including the viewpoints connectivity, harness drawing and 3D topology.

E3.HarnessAnalyzer Data Viewer Screenshot
Zuken’s E3.HarnessAnalyzer powerful data viewer

There are substantial benefits when working with a standardized data model like VEC in using a powerful tool to make these data as information-specific for all involved stakeholders. The digital model can be handled easily during the change management process, and it is straightforward to ensure that everyone has access to the latest version. Costing or planning experts can find their required inputs, do specific analysis, or export data for their individual needs.

There’s no need for me to point out then that unwieldy plots of harness drawings, which have been known to run to 50m long, will be a thing of the past in the times of the digital twin.

Watch out for the next blog in the series where I’ll talk about the building blocks of a digital twin strategy for automotive wiring systems.

The post Why Are Automotive Wiring Systems Experts Getting Excited about the Digital Twin? appeared first on English.

]]>
https://www.zuken.com/en/blog/digital-twin-automotive-wiring/feed/ 0